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Maximized Gust I,oads For a Nonlinear Airplane Using Matched Filter Theory and Constrained Optimization

By

R_)bert C. Scotl *

Anthony S. I+ototzky •

and

Boyd Perry, 11I4'

Ab.slracl

This paper de_ribes an(I illustrates two matched filter-
theory b:tsed schemes for obtaining nmximized ,'rod lime
correlated gust-loads tot a nonlinear airphme. The firs! scheme

is compulatkmally fast _'cansc it uses a simple one-dim_'nsional
search procedure to obtain ils answers. The second ,_heme is
computationally slow I_cansc il uses a more complex nmlli-
dimensional search procedure to obtain its answers, but il
consislently provides slighlly higher maximum loads Ihan the
first scheme. Both schentcs arc illustrated wilh numerical

examples involving a nonlinc.'_r contn_l system
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Introduction

Time-correlated gust loads are time histories of two or
more load quantities due to the same disturbance time history.
Time correlation provides knowledge of the value (magnitude
and sign) of one load when another is maximum. Figure 1
contains an illustration of time-correlated gust loads. At least
two analysis methods have been identified (refs. 1 and 2) that are

capable of computing maximized time-correlated gust loads for
linear aircraft. Both methods solve for the gust profile (gust
velocity as a function of time) that produces the maximum load at
a given location on a linear airplane. Time-correlated gust loads

are obtained by re-applying this gust profile to the airplane and
computing multiple simultaneous load responses. The load
resixmses are physically realizable at all instants of time during
the time history (including the instant at which a given load is
maximum), and correlated loads at any of these instants may be
applied to aircraft structures.

BM1

/ BM2_ Time

Figure 1.- Time-correlated gust loads.



Within the Past seve!-al years there has I_'en much illlt'rCsl

in obtaining a practical an;dysis mellu_,l Ihal in capable ol solving
the analogous problem for nonlinear aircrafl. ,Such an analysis
mclht_l, and the broader issues of harmonizing existing criteria

and minimizing the number of different analyses required for
certification, have been the on-going f_.'us of an international
commitlee of gust loads specialists formed by the [J. S. Federal
Aviation Administration (ref. 3). The method of reference I is
capable of being, bul so far has not been, applied Io nonlinear
aircraft. As slated ill relcrence I, to make the melh_l practical
for nonlinear applications, a search procedure is essential. The
meth(_l of reference 2 in based on Matched Filler Theory (MI;I')
and, in its ctlrrenl I()rnl, is al_lflicabh" tt_ linear syMen|s only.

The purpose of the prcst'nl pal×'r is to extend the mcth_l
described in reference 2 to ,tonlinear systems. The extension

uses MI:I" as a starting point aml then employs a constrained

optimization algorithm to :Htack Ihe nonlinear problenl.
Reference 4 contains a stains rel_rt (as of April 19(X)) on the

development of this exlension. In the present paper,
methodology developnucnl is refined and completed and
numerical msuhs are presenled that illustrate an application of the
method to an airplane with a nonlinear control system.

Review of Matched Filter Theory I,'or l,inear Nyslems

As background for the remainder of tills paper, thin
section presents the key results from reference 2, the original
developnlent of MFT for computing maximized and time
correlated gust loads for linear airplanes.
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Figure 2 depicts the steps that must be employed to
implement MFT and illustrates the intermediate and final

products of the process. Frequency-response-function
representations of atmospheric turbulence and airplane loads are
combined in series and represent the "known dynamics" boxes
in the figure. One-dimensional Gaussian atmospheric
turbulence with the yon Karmas power spectrum is chosen.
Ixmd y is the load to he maximized. Loads Zl through Zn am the
loads to be time correlated with load y. There are three major
steps in the process:

The application of an impulse function of
unit strength to the combined linear system,

producing the impulse response of load y.

]'he normalization of this impulse response
by its own RMS value, followed by its
reversal in time.

The application of this normalized reversed

signal to the combined linear system,
producing time histories of load y and time
histories of loads zl through Zn. Within the
time history of load y, the maximum value is
Yma_.

For simplicity of discussion throughout this paper, these three
steps will be referred to as "linear MFT." Within each step,
significant results, interpretations, and implications are:
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Figure 2.- Scltematic for linear matched filter theory.
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Within Step I The impulse resp()nse of atmospheric
turbulence is shown as an intermediate

quantity. The impulse responses ol
loads Zl through zn can be computed
but are not used.

Within Step 2 The normalized reversed signal, named
the matched excitation wavelornl, flow

has a unit I{MS vahie. MI;'I' guarantec_,
that tllerc is no other unit-RMS
excitation wavclorm that, when applied

Io the comb,ued linear system, will

pr(_luce a v,,.ue ol y larger than Yma_.
This guarantee is a lundamental resull
of Mlrl '

W_ahm__3 The resr_mse of atmospheric turbulence
to the malched excilalion waveform,

named the crilieal gust profile, has a

given Icvcl ol probability. The
responses of alrnl.)spheric turbulence to
all other unit-RMS excitation
wavcforms have the same given level of

probabilily. I,oad y is named the
matched load and loads z I through Zn
are time corrclalcd with load y. At each

instant ol time. the lime history of the
matched load is proportional to Ihe

aiitocorrclation fimcti(in of load y from
a c(liivcHtiollal randonl process
analysis. AI each instant of lime, the
time histories ol loads z I through z. are
proportional to Ihcir corresponding
cross-corrclalion functions with load y.

For nlore detailed in|ormalion about the application of Mt"I" to

the calculation of maximized and time-correlated gusl loads,
including background, theoretical development, nunlerical
implementation, and example calculations, the reader is urged to
consult reference 2.

The Ai)pliealion (if Matched Filler Theory to
Nonlhii,ar Syslenis

The goal of MFI" as applied to nonlinear systems is the
s,tmc as that for linear systems: to find the maximized resf_)use
timc history, the maximum value of the resl_)nse within lha! lime
hislory, and the time correlated resl_)nxe time histories. Because
the system is now nonlinear, superl_)silion and other convenient

features ()f linear MI:T m) longer hold, the most convenient
being Ihat problems can bc _,()lved directly. For nonlinear
systems, problems cannot be solved direclly and a sear(-h

proccdttrc is the only practical means of finding the solution.
litre "the solution" means searching for and linding the
excitation waveform thai m,tximizcx Ymax. The search is
conducted systematically, subject to the constraint thai the
excitation waveform have unit RMS, using the techniques of
numerical oplimization.

Ilccause superposition lit) longer holds, the magnitude
arrd character of the responses arc not necessarily proportional to

the magnitudc of the input. For the remainder of this pal_'r two
input magnitudes are important: k, the strength of the initial

impulse; and or, the design value ol the gust intensity. (For
linear MFT, the magnitude of both .f these quantities was
urliiy.) For nonlinear syslenls the shapc of the excitation

waveform is a function of k and _g, and, consequenlly, lhc
quantity Ymax ix also a functi_)n of these parameters.

This section (if the papt'r is divided into two subsections.
The first describes a one-dimensional search procedure and the

second describes a multi-dimensional search procedure. The
original goal of the present rcsearch was to develop the multi

dimensional search only. tlowever, in an effort to choose a
reasonable starting point for the multi-dimensional search the
authors happened upon the one-dimensional search, and as will
be shown in the numerical results section of this paper, the one-

dimensional search turned out to be a valuable procedure in its
own right.

One-Dimensional Search Procedurl:

The one-dimensional search procedure performs a
'Wsicmatic variation of the quantity k to find the shape of an
excitation waveform that maximizes Ymax. Figure 3 contains a

_,ignal flow diagram tot this search procedure. Figure 3 is very
similar to figure 2, but contains some subtle yet important

differences that are indicated by the shaded boxes and by
quotation marks. In figure 3 the initial impulse has a non-unity
strength; the aircraft loads portion of the known dynamics box
contains nonlinearities; and the shape of the excitation waveform

and the value of Ymax are functions of the initial impulse
strength. In addition, the "matched" excitation waveform and
the "matched" load are shown in quotes because, for nonlinear

systems, there is no guarantee that Ymax is a global maximum.

The application of the one-dimensional search procedure
IS as follows:

Select a design value of or.

Select a range of values of k.

For each value of k, perform steps 1
through 3 of linear MFT, obtaining values
of Ymax and corresponding "matched"
excitation waveforms.

From step 3 above, find the maximum

value of Ymax and its corresponding
"matched" excitation waveform.

Multi-Dimensional Search Procedurl •

The multi-dimensional search procedure uses as its

slarting point the maximum value of Ymax and the corresponding
"matched" excitation waveform obtained by performing the one-
dimensional search procedure. In an attempt to obtain an even
larger value of Yrnax, the shape of the "matched" excitation
wavcfl._rm is further optimized subject to the unit-RMS constraint

mentioned above. The major features of this optimization
pn_'edure are illustrated in figure 4.

Initial excitation wavefbrm. - Beginning in the upper left
corner of figure 4, the box labelled initial excitation waveform is
the waveform resulting from the one-dimensional search
procedure.

Coefficient generator, - The purpose of the "coefficient

generator" is to approximate the initial excitation waveform by a
finite number of coefficients. These coefficients are first used as

the design variables in the optimization procedure and later used
to "reassemble" the final optimized waveform time history.

Because the execution time of the optimization procedure is
roughly proportional to the number of design variables, an
important consideration was to choose an approximation
technique that produced in the smallest number of coefficients

for a given goodness ol approximation. Several approximation
techniques were considered including the use of orthogonal
functions and cubic splines.

The orthogonal functions considered were Fourier series
and Chebyshev polynomials. It was found (ref. 4) that it took

about an order of magnitude fewer coefficients to approximate
the initial excitationwaveform with Cbebyshev polynomials than
to approximate it with Fourier series. Figure 5 shows an initial

excitation waveform and approximations to it using first a 20-
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term and then a 54-term Chebyshev approximation. The choice

of how many coefficients to include in the approximation was
made by examining a plot of the absolute value of the coefficient
versus the coefficient number.

Excitation

Waveform ..... -_-_ : v V V .V _

0 5 Time, see1.0 15

(a) Original excitation wavefom_.

Normalized __ ?-- _v._..,...V! I
Excitation - -- _ -- v

Waveform ......

0 5 Time, sec. 10 t5

(b) Chebyshev approximation using 20 terms.

N°rmalized f _
Excitation - -wa  ,or .... _;

0 5 Time, sec. 10 15

(c) Chebyshev approximation using 54 terms.

Figure 5.- Excitation waveform approximations using

Chebyshev polynomials.

A waveform approximation technique based on cubic
splines was also considered. For this method, discrete points in
the waveform time-history were selected as design variables.

The amplitudes of these points could then be changed by the
optimization routine. By using a cubic spline the waveform time

history can be assembled from these discrete points as needed in
the optimization algorithm. As will be shown, this technique did
not provide as accurate an approximation as Chebyshev
polynomials, yet the number of design variables could be
substantially reduced.

Constrained ootimization algorithms. - Two optimization
algorithms were considered: a direct method and an indirect
method. This section briefly describes these algorithms.

The direct method (ref. 5) chooses search directions
(systematic variations of the values of the coefficients) that
minimize an objective function without violating constraints.
The objective of this particular application is to maximize one of

the loads. This objective function is formulated such that
increasing the load, maximizing wing root bending moment
0NRBM) for instance, reduces the objective function.

Objective: minimize F(p) = - { max[ y(t,p) I }2 (1)
over all t

The only constraint is that of keeping the RMS of the
excitation waveform, exc(t,p), at or below a specified value. In
actuality the waveform RMS should remain constant, implying
the necessity for an equality constraint. However, in practice an
inequality constraint performs very well, with the optimizer
driving the value of the constraint to its maximum-allowable

value. This, in effect, gives the desired result while not overly
constraining the design space.

Constraint: g(p) = {RMSI exc(t,p) I - 1.0} < 0.0 (2)

The indirect method (ref. 6) converts a constrained
optimization problem into an unconstrained problem by

combining the constraints with the objective functions into a
single composite function known as the Kreisselmeier-
Steinhauser function. The KS function is formulated such that it

decreases when the objective function increases and increases
when the constraint is violated. Here, the optimizer varies the
coefficients to minimize the KS function.

KS(p) = p loge[exp(p{ (g(pi.1)+ i-_.F(pi))'It)

+ exp(p g(Pi))]

where F and g are defined in equations (1) and (2).

(3)

The shaded box in figure 4 contains the detailed
sequential analysis steps performed. The optimizer cycles

through the shaded box many times per iteration to obtain
gradient information. The accompanying illustrations in the
figure (boxes with rounded corners) show intermediate results
and the nonlinear model.

Nonlinear simulation. The most computationally
expensive aspect of this multi-dimensional search is the
nonlinear simulation, shown in the shaded box in figure 4. The

original simulation model was written in MATRIXx
SYSTEM BUILD simulation language (ref. 7). This high-level
language I)roved very slow considering the large number of

simulations required by the optimization algorithms. Therefore,
the entire process was converted to FORTRAN with the code for
the simulation model being created by MATRIXx

HYPER BUILD (ref. 8). This greatly increased throughput so
that opffmization results could be obtained in a reasonable
amount of time. In addition, double precision was used so that

sufficiendy accurate gradient information could be obtained from
the simulations.

Numerical Results

This section presents numerical results for the one-

dimensional and multi-dimensional search procedures.

A nonlinear simulation model of the ARW-2 drone

aircraft equipped with a nonlinear control system was
constructed to demonstrate both search procedures. Figure 6
shows a block diagram of the simulation model and includes the
aeroelastic plant, a gust load alleviation (GLA) control law, and
nonlinear control elements. The aeroelastic plant is a linear, s-

plane aeroelastic half-model consisting of two symmetric rigid-
body modes and three flexible modes. Unsteady aerodynamics
were obtained using the doublet lattice method (ref. 9). The
model also includes the dynamics of the control surface
actuators. The two-input/two-output GLA control law was

Gust Time _ Aircraft EOM _ LoadTIme TM

History _,j_] rigid body&flexible _-_'- Htstodes :_

"Spo:ler" _! sen_n_

IElev=°'I a,,uato _

..
&cmd

Alleviation
Control Law

Nonlinear Element l

-- ,limit_em. F "_ wing

5cmd J

Figure 6.- Nonlinear model of aircraft and gust load _eviado.
system.



obtained using a I,inear Quadratic Gaussian design approach

with the intent of reducing wing root bending moment (ref. I0).
The nonlinear elements impose deflection limits of ±10" on the
elevators and 0 to _ 10" on the ailerons, simulating spoilers.

Two versions of this model will be considered: a simple
version having only rigid-body modes (10 states) that served as
a computationally economical test case; and a much larger, fully
flexible model (32 states). These models will be hereinafter
referred to as the rigid and flexible models, respectively.
Analysis conditions for this model are 0.86 Mach number and
24,000 feet altitude.

One-Dimensional Search

The one-dimensional search procedure was performed on
the rigid model. In order for the control-surface deflection limits

to become active in the simulation, an artificially large value of
gust intensity, og, was required. With this value chosen, values
of the initial impulse strength, k, were selected over the rimge
from 0.1 to 1000. Typical results, in this case corresponding to
maximizing wing root bending moment (WRBM), are presented
in figure 7. Figure 7 contains 3 plots. The lower portion of the
figure contains a plot of WRBM as a function of initial impulse
strength: the solid circles are actual numerical results; the solid
line is a faired line. Three sets of time histories of excitation

waveform and its associated maximized WRBM are shown in

the upper portion of figure 7. The corresponding values of k are

indicated on the figure. For this particular example, a value of k
of about three yields the largest maximized value of WRBM.

4X
1.5 Excitation _ kl =0.8

Waveform Ii

..... k3= 8

3.2Xl 0 E

WRBM, in-lb /_

kl ' :;
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/

23/ 10

sec /_/ Time, sec

Maximum WRBM,

in-lb 2.8

2.6

2.4 i I "[

10 -1 10 0 101 10 2 10 3

Initial Impulse Strength, k

2O

Figure 7.- Results from one-dimensional search procedure. Rigid model.

Multi-Dimensional Search

Maximizing WRBM in the rigid model will again be

considered. To more clearly demonstrate the meth(gl, a
nonoptimal value of k (kl) was chosen to obtain the initial

excitation waveform for this example. The Chebyshev
waveform approximation was utilized in this example and
required 54 coefficients (design variables). The direct optimizer
was used and the resulting convergence history is shown in
figure 8. This figure shows thai the optimization scheme

succeeds in increasing the maximum WRBM while ultimately
satisfying the RMS constraint on the excitation waveform.

Figure 9 shows a comparison of the initial and optimized
time histories for this test case. By considering figures 8 and 9,
two conclusions can be drawn: (I) the multi-dimensional search

procedure succeeds in altering the shape of the excitation
waveform which causes alterations of the various time-histories

and an increase in the maximum WRBM; and (2) the procedure

achieves this increase in maximum load while maintaining the
RMS constraint on the excitation waveform.

Figure 10 presents the results of applying the multi-
dimensional search procedure a number of times. Again WRBM
is the load of interest and again the rigid model is employed.
The direct and indirect optimizers were exercised and excitation

waveforms were approximated by Chebyshev polynomials and
by cubic splines, The numbers in parentheses indicate the
number of terms required to obtain an acceptable approximation
to the waveform. The solid line in figure 10 is the faired line

presented originally in figure 7. For the example shown, the
direct optimizer with the Chebyshev polynomials was the best
combination for reproducing the results from the one-
dimensional search procedure and for obtaining the largest
maximized loads.

The squares and circles in figure l0 represent results of
the initial and final values of the maximum WRBM, In all cases,

at each value of k, the lower symbols represent the initial value
of maximized WRBM and the upper symbols represent the final
value. Regardless of the starting point, the direct optimizer
consistently achieved the same value of maximized WRBM,
indicating that it was more insensitive to the starting point than

6
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Figure 8.- Convergence history tor maximizing WRBM of the
rigid nxx:lel using the direct optimizer and .54

Chebyshev polynomials.

was the indirect optimizer. The direct optimizer also yielded

larger maximum load values and converged in fewer iterations.
in addition, the direct optimizer was able to converge with both
Chebyshev and cubic spline approximations to the excitation
waveform while the indirect optimizer was not able to converge
when the spline approximation was used.

In figure I0 the lower gray squares are below the solid
line but the upper gray ,squares are very close to the highest value
of WRBM achieved. The lower symbols being below the solid
line is due to the fact that the spline approximation does a poorer
job at reproducing the initial excitation waveform than does the
Chebyshev approximation. However, the spline approximation
does a very adequate job of reproducing the final excitation

waveform and produces maximized WRBMs very close to those
produced by the Chebyshev approximation.

From the data presented in figure 10, the usefulness and

value of the one-dimensional search procedure becomes
obvious. A very simple and straightforward variation in a single
quantity, k, produced a value of maximized load which is within
1.1% of the value produced by the significantly more complex
multi-dimensional search procedure.
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Figure 9.- Comparison of initial and optimized time-histories. Rigid model.
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Figure 1i shows results for maximizing WRBM using

the flexible model. The solid line again represents results from
the one-dimensional search procedure and the squares represent
results from the multi-dimensional search. In this example,
because of the higher-frequency dynamics in the excitation
waveform, 124 Chebyshev polynomials were required to
produce an adequate approximation of the waveform. The
indirect optimizer was not considered here for the reasons cited
above. Also, the spline approximation was unsuccessful for this
model, even with the direct optimizer. Consistent results were

obtained for the flexible model only when the direct optimizer
and the Chebyshev polynomial approximation were used.

The usefulness and value of the one-dimensional search

procedure is again illustrated by Ihe results from figure I I. The
simple procedure produced a value of maximized load which is
within 0.78% of the value produced by the multi-dimensional
search procedure.

So far, the only load considered has been wing root

bending moment. Figure 12 shows results for maximizing wing
outboard torsion moment (WOBTM) for the flexible model. The

solid line represents results from applying the one-dimensional
search procedure to WOBTM. The general shapes of the solid

lines in figures 10, 1 I, and 12 are very similar. For the multi-
dimensional search procedure, 220 Chebyshev polynomials
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Figure ! 1.- Summary of results Ior maximizing WRBM using
the one-dimensional and _veral multi-dimensional
,searches. Nexible n_el.
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Figure 12.- Summary of results for maximizing WOBTM
using the one-dimensional and several multi-
dimensional searches. Flexible model.

were required to produce an adequate approximation of the
excitation waveforrn. The solid squares represent only the initial
values of maximized WOBTM; final values are not shown
because, due to the large number of coefficients, a converged
solution was not obtained.

Based on the ability (demonstrated in figures 10 and 1 I)
of the one-dimensional search procedure to produce maximized
loads very close to those produced by the multi-dimensional
search procedure, it is the opinion of the authors that the value of

the maximum WOBTM is very close to the value predicted by
the one-dimensional search.

Concluding Remarks

This paper has presented two search procedures (one-
dimensional and multi-dimensional) for obtaining maximized

gust loads for a nonlinear airplane using Matched Filter Theory
and constrained optimization. The procedures were applied to an
example airplane with a nonlinear gust load alleviation active

control system. Numerical results confirm that the procedures
are successful in maximizing the loads of interest. For the
example configuration considered, the one-dimensional search

succeeded in obtaining loads that were within about I% of the
loads produced by the multi-dimensional search procedure. This
suggesLs that the simpler one-dimensional search method may be
the most practical implementation. In addition, further study is
required of the modelling of excitation waveforms characterized

by high-frequency contents.
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